HiggsAnalysis-KITHiggsToTauTau
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros
plot_AUC_2D Namespace Reference

Variables

tuple log = logging.getLogger(__name__)
 
tuple parser
 
string help = "output file pattern"
 
string default = "mt"
 
list choices = ["tt", "mt", "et", "em", "mm", "ee"]
 
tuple args = parser.parse_args()
 
tuple outputfolder = os.path.dirname(args.output_dir)
 
 outputname = args.score_name
 
string ntuple_string = args.channel+"_jecUncNom/ntuple"
 
tuple Output = open(os.path.join(outputfolder, outputname.replace("$N$", "_N_").replace("$X$", "_X_") + ".txt"),"w")
 
tuple fig2 = plt.figure()
 
tuple ax2 = fig2.add_subplot(111, xlabel='number of trees', ylabel='integral over ROC curve', xlim=[1.1*min(args.NTrees)-0.1*max(args.NTrees),1.1*max(args.NTrees)-0.1*min(args.NTrees)])
 
list colors = ["r", "b", "g", "y"]
 
list keys = []
 
string filename = args.channel+"_"
 
dictionary TestLeafs = {}
 
dictionary ROCintegral = {}
 
dictionary ROCintegralTrain = {}
 
list y1 = [1.0]
 
list y2 = [1.0]
 
list ymean = [1.0]
 
list y1T = [1.0]
 
list y2T = [1.0]
 
list ymeanT = [1.0]
 
tuple f = ROOT.TFile.Open(TestLeafs[key]+"T%i.root"%(i))
 
tuple hist = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_rejBvsS")
 
tuple hist2 = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_trainingRejBvsS")
 
float ROCcrossing = 0.0
 
list x_values = [0.0]
 
tuple fig = plt.figure()
 
tuple ax = fig.add_subplot(111, xlabel='signal efficiency', ylabel='background rejection')
 
list y_values = []
 
list yT_values = []
 

Variable Documentation

tuple plot_AUC_2D.args = parser.parse_args()
tuple plot_AUC_2D.ax = fig.add_subplot(111, xlabel='signal efficiency', ylabel='background rejection')
tuple plot_AUC_2D.ax2 = fig2.add_subplot(111, xlabel='number of trees', ylabel='integral over ROC curve', xlim=[1.1*min(args.NTrees)-0.1*max(args.NTrees),1.1*max(args.NTrees)-0.1*min(args.NTrees)])
list plot_AUC_2D.choices = ["tt", "mt", "et", "em", "mm", "ee"]
list plot_AUC_2D.colors = ["r", "b", "g", "y"]
string plot_AUC_2D.default = "mt"
tuple plot_AUC_2D.f = ROOT.TFile.Open(TestLeafs[key]+"T%i.root"%(i))
tuple plot_AUC_2D.fig = plt.figure()
tuple plot_AUC_2D.fig2 = plt.figure()
string plot_AUC_2D.filename = args.channel+"_"
string plot_AUC_2D.help = "output file pattern"
tuple plot_AUC_2D.hist = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_rejBvsS")
tuple plot_AUC_2D.hist2 = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_trainingRejBvsS")
list plot_AUC_2D.keys = []
tuple plot_AUC_2D.log = logging.getLogger(__name__)
string plot_AUC_2D.ntuple_string = args.channel+"_jecUncNom/ntuple"
tuple plot_AUC_2D.Output = open(os.path.join(outputfolder, outputname.replace("$N$", "_N_").replace("$X$", "_X_") + ".txt"),"w")
tuple plot_AUC_2D.outputfolder = os.path.dirname(args.output_dir)
plot_AUC_2D.outputname = args.score_name
tuple plot_AUC_2D.parser
Initial value:
1 = argparse.ArgumentParser(description="Get information on overtraining.",
2  parents=[logger.loggingParser])
float plot_AUC_2D.ROCcrossing = 0.0
dictionary plot_AUC_2D.ROCintegral = {}
dictionary plot_AUC_2D.ROCintegralTrain = {}
dictionary plot_AUC_2D.TestLeafs = {}
list plot_AUC_2D.x_values = [0.0]
list plot_AUC_2D.y1 = [1.0]
list plot_AUC_2D.y1T = [1.0]
list plot_AUC_2D.y2 = [1.0]
list plot_AUC_2D.y2T = [1.0]
list plot_AUC_2D.y_values = []
list plot_AUC_2D.ymean = [1.0]
list plot_AUC_2D.ymeanT = [1.0]
list plot_AUC_2D.yT_values = []