Variables | |
| tuple | log = logging.getLogger(__name__) |
| tuple | parser |
| string | help = "output file pattern" |
| string | default = "mt" |
| list | choices = ["tt", "mt", "et", "em", "mm", "ee"] |
| tuple | args = parser.parse_args() |
| tuple | outputfolder = os.path.dirname(args.output_dir) |
| outputname = args.score_name | |
| string | ntuple_string = args.channel+"_jecUncNom/ntuple" |
| tuple | Output = open(os.path.join(outputfolder, outputname.replace("$N$", "_N_").replace("$X$", "_X_") + ".txt"),"w") |
| tuple | fig2 = plt.figure() |
| tuple | ax2 = fig2.add_subplot(111, xlabel='number of trees', ylabel='integral over ROC curve', xlim=[1.1*min(args.NTrees)-0.1*max(args.NTrees),1.1*max(args.NTrees)-0.1*min(args.NTrees)]) |
| list | colors = ["r", "b", "g", "y"] |
| list | keys = [] |
| string | filename = args.channel+"_" |
| dictionary | TestLeafs = {} |
| dictionary | ROCintegral = {} |
| dictionary | ROCintegralTrain = {} |
| list | y1 = [1.0] |
| list | y2 = [1.0] |
| list | ymean = [1.0] |
| list | y1T = [1.0] |
| list | y2T = [1.0] |
| list | ymeanT = [1.0] |
| tuple | f = ROOT.TFile.Open(TestLeafs[key]+"T%i.root"%(i)) |
| tuple | hist = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_rejBvsS") |
| tuple | hist2 = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_trainingRejBvsS") |
| float | ROCcrossing = 0.0 |
| list | x_values = [0.0] |
| tuple | fig = plt.figure() |
| tuple | ax = fig.add_subplot(111, xlabel='signal efficiency', ylabel='background rejection') |
| list | y_values = [] |
| list | yT_values = [] |
| tuple plot_AUC_2D.args = parser.parse_args() |
| tuple plot_AUC_2D.ax = fig.add_subplot(111, xlabel='signal efficiency', ylabel='background rejection') |
| tuple plot_AUC_2D.ax2 = fig2.add_subplot(111, xlabel='number of trees', ylabel='integral over ROC curve', xlim=[1.1*min(args.NTrees)-0.1*max(args.NTrees),1.1*max(args.NTrees)-0.1*min(args.NTrees)]) |
| list plot_AUC_2D.choices = ["tt", "mt", "et", "em", "mm", "ee"] |
| list plot_AUC_2D.colors = ["r", "b", "g", "y"] |
| string plot_AUC_2D.default = "mt" |
| tuple plot_AUC_2D.f = ROOT.TFile.Open(TestLeafs[key]+"T%i.root"%(i)) |
| tuple plot_AUC_2D.fig = plt.figure() |
| tuple plot_AUC_2D.fig2 = plt.figure() |
| string plot_AUC_2D.filename = args.channel+"_" |
| string plot_AUC_2D.help = "output file pattern" |
| tuple plot_AUC_2D.hist = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_rejBvsS") |
| tuple plot_AUC_2D.hist2 = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_trainingRejBvsS") |
| list plot_AUC_2D.keys = [] |
| tuple plot_AUC_2D.log = logging.getLogger(__name__) |
| string plot_AUC_2D.ntuple_string = args.channel+"_jecUncNom/ntuple" |
| tuple plot_AUC_2D.Output = open(os.path.join(outputfolder, outputname.replace("$N$", "_N_").replace("$X$", "_X_") + ".txt"),"w") |
| tuple plot_AUC_2D.outputfolder = os.path.dirname(args.output_dir) |
| plot_AUC_2D.outputname = args.score_name |
| tuple plot_AUC_2D.parser |
| float plot_AUC_2D.ROCcrossing = 0.0 |
| dictionary plot_AUC_2D.ROCintegral = {} |
| dictionary plot_AUC_2D.ROCintegralTrain = {} |
| dictionary plot_AUC_2D.TestLeafs = {} |
| list plot_AUC_2D.x_values = [0.0] |
| list plot_AUC_2D.y1 = [1.0] |
| list plot_AUC_2D.y1T = [1.0] |
| list plot_AUC_2D.y2 = [1.0] |
| list plot_AUC_2D.y2T = [1.0] |
| list plot_AUC_2D.y_values = [] |
| list plot_AUC_2D.ymean = [1.0] |
| list plot_AUC_2D.ymeanT = [1.0] |
| list plot_AUC_2D.yT_values = [] |