Variables | |
| tuple | log = logging.getLogger(__name__) |
| tuple | parser |
| string | help = "input files" |
| string | default = "mt" |
| list | choices = ["tt", "mt", "et", "em", "mm", "ee"] |
| tuple | args = parser.parse_args() |
| outputname = args.score_name | |
| string | ntuple_string = args.channel+"_jecUncNom/ntuple" |
| list | keys = [] |
| dictionary | TestLeafs = {} |
| dictionary | ROCintegral = {} |
| dictionary | ROCintegralTrain = {} |
| list | y1 = [1.0] |
| list | y2 = [1.0] |
| list | ymean = [1.0] |
| list | y1T = [1.0] |
| list | y2T = [1.0] |
| list | ymeanT = [1.0] |
| tuple | f = ROOT.TFile.Open(TestLeafs[key]+"T%i.root"%(i)) |
| tuple | hist = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_rejBvsS") |
| tuple | hist2 = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_trainingRejBvsS") |
| float | ROCcrossing = 0.0 |
| list | x_values = [0.0] |
| tuple | fig = plt.figure() |
| tuple | ax = fig.add_subplot(111, xlabel='signal efficiency', ylabel='background rejection') |
| tuple | Output = open(outputname + ".txt","w") |
| list | y_values = [] |
| list | yT_values = [] |
| tuple | llim = int(args.sublims.split(":")[0]) |
| tuple | ulim = int(args.sublims.split(":")[1]) |
| tuple plot_AUC_1D.args = parser.parse_args() |
| tuple plot_AUC_1D.ax = fig.add_subplot(111, xlabel='signal efficiency', ylabel='background rejection') |
| list plot_AUC_1D.choices = ["tt", "mt", "et", "em", "mm", "ee"] |
| string plot_AUC_1D.default = "mt" |
| tuple plot_AUC_1D.f = ROOT.TFile.Open(TestLeafs[key]+"T%i.root"%(i)) |
| tuple plot_AUC_1D.fig = plt.figure() |
| string plot_AUC_1D.help = "input files" |
| tuple plot_AUC_1D.hist = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_rejBvsS") |
| tuple plot_AUC_1D.hist2 = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_trainingRejBvsS") |
| list plot_AUC_1D.keys = [] |
| tuple plot_AUC_1D.llim = int(args.sublims.split(":")[0]) |
| tuple plot_AUC_1D.log = logging.getLogger(__name__) |
| string plot_AUC_1D.ntuple_string = args.channel+"_jecUncNom/ntuple" |
| tuple plot_AUC_1D.Output = open(outputname + ".txt","w") |
| tuple plot_AUC_1D.outputname = args.score_name |
| tuple plot_AUC_1D.parser |
| float plot_AUC_1D.ROCcrossing = 0.0 |
| dictionary plot_AUC_1D.ROCintegral = {} |
| dictionary plot_AUC_1D.ROCintegralTrain = {} |
| dictionary plot_AUC_1D.TestLeafs = {} |
| tuple plot_AUC_1D.ulim = int(args.sublims.split(":")[1]) |
| list plot_AUC_1D.x_values = [0.0] |
| list plot_AUC_1D.y1 = [1.0] |
| list plot_AUC_1D.y1T = [1.0] |
| list plot_AUC_1D.y2 = [1.0] |
| list plot_AUC_1D.y2T = [1.0] |
| list plot_AUC_1D.y_values = [] |
| list plot_AUC_1D.ymean = [1.0] |
| list plot_AUC_1D.ymeanT = [1.0] |
| list plot_AUC_1D.yT_values = [] |