HiggsAnalysis-KITHiggsToTauTau
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros
plot_AUC_1D Namespace Reference

Variables

tuple log = logging.getLogger(__name__)
 
tuple parser
 
string help = "input files"
 
string default = "mt"
 
list choices = ["tt", "mt", "et", "em", "mm", "ee"]
 
tuple args = parser.parse_args()
 
 outputname = args.score_name
 
string ntuple_string = args.channel+"_jecUncNom/ntuple"
 
list keys = []
 
dictionary TestLeafs = {}
 
dictionary ROCintegral = {}
 
dictionary ROCintegralTrain = {}
 
list y1 = [1.0]
 
list y2 = [1.0]
 
list ymean = [1.0]
 
list y1T = [1.0]
 
list y2T = [1.0]
 
list ymeanT = [1.0]
 
tuple f = ROOT.TFile.Open(TestLeafs[key]+"T%i.root"%(i))
 
tuple hist = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_rejBvsS")
 
tuple hist2 = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_trainingRejBvsS")
 
float ROCcrossing = 0.0
 
list x_values = [0.0]
 
tuple fig = plt.figure()
 
tuple ax = fig.add_subplot(111, xlabel='signal efficiency', ylabel='background rejection')
 
tuple Output = open(outputname + ".txt","w")
 
list y_values = []
 
list yT_values = []
 
tuple llim = int(args.sublims.split(":")[0])
 
tuple ulim = int(args.sublims.split(":")[1])
 

Variable Documentation

tuple plot_AUC_1D.args = parser.parse_args()
tuple plot_AUC_1D.ax = fig.add_subplot(111, xlabel='signal efficiency', ylabel='background rejection')
list plot_AUC_1D.choices = ["tt", "mt", "et", "em", "mm", "ee"]
string plot_AUC_1D.default = "mt"
tuple plot_AUC_1D.f = ROOT.TFile.Open(TestLeafs[key]+"T%i.root"%(i))
tuple plot_AUC_1D.fig = plt.figure()
string plot_AUC_1D.help = "input files"
tuple plot_AUC_1D.hist = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_rejBvsS")
tuple plot_AUC_1D.hist2 = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_trainingRejBvsS")
list plot_AUC_1D.keys = []
tuple plot_AUC_1D.llim = int(args.sublims.split(":")[0])
tuple plot_AUC_1D.log = logging.getLogger(__name__)
string plot_AUC_1D.ntuple_string = args.channel+"_jecUncNom/ntuple"
tuple plot_AUC_1D.Output = open(outputname + ".txt","w")
tuple plot_AUC_1D.outputname = args.score_name
tuple plot_AUC_1D.parser
Initial value:
1 = argparse.ArgumentParser(description="Get information on overtraining.",
2  parents=[logger.loggingParser])
float plot_AUC_1D.ROCcrossing = 0.0
dictionary plot_AUC_1D.ROCintegral = {}
dictionary plot_AUC_1D.ROCintegralTrain = {}
dictionary plot_AUC_1D.TestLeafs = {}
tuple plot_AUC_1D.ulim = int(args.sublims.split(":")[1])
list plot_AUC_1D.x_values = [0.0]
list plot_AUC_1D.y1 = [1.0]
list plot_AUC_1D.y1T = [1.0]
list plot_AUC_1D.y2 = [1.0]
list plot_AUC_1D.y2T = [1.0]
list plot_AUC_1D.y_values = []
list plot_AUC_1D.ymean = [1.0]
list plot_AUC_1D.ymeanT = [1.0]
list plot_AUC_1D.yT_values = []