Variables | |
tuple | log = logging.getLogger(__name__) |
tuple | parser |
string | help = "input files" |
string | default = "mt" |
list | choices = ["tt", "mt", "et", "em", "mm", "ee"] |
tuple | args = parser.parse_args() |
outputname = args.score_name | |
string | ntuple_string = args.channel+"_jecUncNom/ntuple" |
list | keys = [] |
dictionary | TestLeafs = {} |
dictionary | ROCintegral = {} |
dictionary | ROCintegralTrain = {} |
list | y1 = [1.0] |
list | y2 = [1.0] |
list | ymean = [1.0] |
list | y1T = [1.0] |
list | y2T = [1.0] |
list | ymeanT = [1.0] |
tuple | f = ROOT.TFile.Open(TestLeafs[key]+"T%i.root"%(i)) |
tuple | hist = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_rejBvsS") |
tuple | hist2 = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_trainingRejBvsS") |
float | ROCcrossing = 0.0 |
list | x_values = [0.0] |
tuple | fig = plt.figure() |
tuple | ax = fig.add_subplot(111, xlabel='signal efficiency', ylabel='background rejection') |
tuple | Output = open(outputname + ".txt","w") |
list | y_values = [] |
list | yT_values = [] |
tuple | llim = int(args.sublims.split(":")[0]) |
tuple | ulim = int(args.sublims.split(":")[1]) |
tuple plot_AUC_1D.args = parser.parse_args() |
tuple plot_AUC_1D.ax = fig.add_subplot(111, xlabel='signal efficiency', ylabel='background rejection') |
list plot_AUC_1D.choices = ["tt", "mt", "et", "em", "mm", "ee"] |
string plot_AUC_1D.default = "mt" |
tuple plot_AUC_1D.f = ROOT.TFile.Open(TestLeafs[key]+"T%i.root"%(i)) |
tuple plot_AUC_1D.fig = plt.figure() |
string plot_AUC_1D.help = "input files" |
tuple plot_AUC_1D.hist = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_rejBvsS") |
tuple plot_AUC_1D.hist2 = f.Get("Method_BDT/BDT_"+TestLeafs[key]+"/MVA_BDT_"+TestLeafs[key]+"_trainingRejBvsS") |
list plot_AUC_1D.keys = [] |
tuple plot_AUC_1D.llim = int(args.sublims.split(":")[0]) |
tuple plot_AUC_1D.log = logging.getLogger(__name__) |
string plot_AUC_1D.ntuple_string = args.channel+"_jecUncNom/ntuple" |
tuple plot_AUC_1D.Output = open(outputname + ".txt","w") |
tuple plot_AUC_1D.outputname = args.score_name |
tuple plot_AUC_1D.parser |
float plot_AUC_1D.ROCcrossing = 0.0 |
dictionary plot_AUC_1D.ROCintegral = {} |
dictionary plot_AUC_1D.ROCintegralTrain = {} |
dictionary plot_AUC_1D.TestLeafs = {} |
tuple plot_AUC_1D.ulim = int(args.sublims.split(":")[1]) |
list plot_AUC_1D.x_values = [0.0] |
list plot_AUC_1D.y1 = [1.0] |
list plot_AUC_1D.y1T = [1.0] |
list plot_AUC_1D.y2 = [1.0] |
list plot_AUC_1D.y2T = [1.0] |
list plot_AUC_1D.y_values = [] |
list plot_AUC_1D.ymean = [1.0] |
list plot_AUC_1D.ymeanT = [1.0] |
list plot_AUC_1D.yT_values = [] |