HiggsAnalysis-KITHiggsToTauTau
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros
makePlots_datacardsZttPolarisation Namespace Reference

Functions

def replace_observation_by_asimov_dataset
 

Variables

tuple log = logging.getLogger(__name__)
 
tuple parser
 
string help = "Input directory."
 
list default = ["mt", "et", "tt", "em"]
 
list choices = ["individual", "channel", "category", "combined"]
 
tuple args = parser.parse_args()
 
tuple sample_settings = samples.Samples()
 
tuple binnings_settings = binnings.BinningsDict()
 
tuple systematics_factory = systematics.SystematicsFactory()
 
list plot_configs = []
 
list output_files = []
 
list merged_output_files = []
 
list hadd_commands = []
 
tuple datacards = zttpolarisationdatacards.ZttPolarisationDatacards()
 
string tmp_input_root_filename_template = "input/${ANALYSIS}_${CHANNEL}_${BIN}_${SYSTEMATIC}_${ERA}.root"
 
string input_root_filename_template = "input/${ANALYSIS}_${CHANNEL}_${BIN}_${ERA}.root"
 
string bkg_histogram_name_template = "${BIN}/${PROCESS}"
 
string sig_histogram_name_template = "${BIN}/${PROCESS}"
 
string bkg_syst_histogram_name_template = "${BIN}/${PROCESS}_${SYSTEMATIC}"
 
string sig_syst_histogram_name_template = "${BIN}/${PROCESS}_${SYSTEMATIC}"
 
string output_root_filename_template = "datacards/common/${ANALYSIS}.input_${ERA}.root"
 
list datacard_filename_templates = []
 
tuple categories = datacards.cb.cp()
 
tuple datacards_per_channel_category = zttpolarisationdatacards.ZttPolarisationDatacards(cb=datacards.cb.cp().channel([channel]).bin([category]))
 
list higgs_masses = [mass for mass in datacards_per_channel_category.cb.mass_set() if mass != "*"]
 
tuple output_file
 
list tmp_output_files = []
 
tuple nominal = (shape_systematic == "nominal")
 
list list_of_samples = [datacards.configs.process2sample(process) for process in list_of_samples]
 
list asimov_nicks = []
 
string systematic = "nominal"
 
string samples = "\", \""
 
 channel = channel,
 
 category = category,
 
tuple config
 
tuple systematics_settings = systematics_factory.get(shape_systematic)
 
string binnings_key = "binningZttPol13TeV_"
 
 histogram_name_template = bkg_histogram_name_templateifnominalelsebkg_syst_histogram_name_template
 
tuple PROCESS = datacards.configs.sample2process(sample.replace("asimov", "data"))
 
 BIN = category,
 
 SYSTEMATIC = systematic
 
tuple tmp_output_file
 
 DST = output_file,
 
string SRC = " "
 
list debug_plot_configs = []
 
 update_systematics = True
 
tuple processes = datacards.cb.cp()
 
float add_threshold = 0.1
 
tuple tmp_output_dir = os.path.join(args.output_dir, "" if scaled_lumi is None else ("lumi{:07}pb".format(int(scale_lumi*1000))))
 
 tmp_www = None
 
dictionary polarisation_values_tree_files = {}
 
tuple output_dir = os.path.join(tmp_output_dir, "" if asimov_polarisation is None else ("pol{:04}".format(int(asimov_polarisation*1000))))
 
 www = None
 
dictionary datacards_cbs = {}
 
tuple datacards_workspaces
 
 split_stat_syst_uncs = False
 
tuple datacards_postfit_shapes
 
dictionary plotting_args = {"ratio" : args.ratio, "args" : args.args, "lumi" : args.lumi, "x_expressions" : "tauPolarisationDiscriminatorSvfit", "era" : "2015", "www" : www}
 
 n_processes = args.n_processes,
 
 signal_stacked_on_bkg = True
 
 s_fit_only = True,
 
list additional_freeze_nuisances = ["r"]
 
dictionary annotation_replacements = {channel : index for (index, channel) in enumerate(["combined"] + args.channel)}
 
dictionary values_tree_files = {}
 
tuple x_values = sorted([values[0] for values in values_tree_files.keys() if values[0] > -990.0])
 
dictionary inv_annotation_replacements = {value : key for key, value in annotation_replacements.iteritems() if (type(key) != int) or (key < 1000)}
 
tuple x_values_raw = sorted([values[1] for values in values_tree_files.keys() if values[1] > -990.0])
 

Function Documentation

def makePlots_datacardsZttPolarisation.replace_observation_by_asimov_dataset (   datacards,
  pol = -0.159,
  r = 1.0 
)

Variable Documentation

float makePlots_datacardsZttPolarisation.add_threshold = 0.1
list makePlots_datacardsZttPolarisation.additional_freeze_nuisances = ["r"]
dictionary makePlots_datacardsZttPolarisation.annotation_replacements = {channel : index for (index, channel) in enumerate(["combined"] + args.channel)}
tuple makePlots_datacardsZttPolarisation.args = parser.parse_args()
list makePlots_datacardsZttPolarisation.asimov_nicks = []
makePlots_datacardsZttPolarisation.BIN = category,
string makePlots_datacardsZttPolarisation.binnings_key = "binningZttPol13TeV_"
tuple makePlots_datacardsZttPolarisation.binnings_settings = binnings.BinningsDict()
string makePlots_datacardsZttPolarisation.bkg_histogram_name_template = "${BIN}/${PROCESS}"
string makePlots_datacardsZttPolarisation.bkg_syst_histogram_name_template = "${BIN}/${PROCESS}_${SYSTEMATIC}"
tuple makePlots_datacardsZttPolarisation.categories = datacards.cb.cp()
makePlots_datacardsZttPolarisation.category = category,
makePlots_datacardsZttPolarisation.channel = channel,
list makePlots_datacardsZttPolarisation.choices = ["individual", "channel", "category", "combined"]
tuple makePlots_datacardsZttPolarisation.config
Initial value:
1 = sample_settings.get_config(
2  samples=[getattr(samples.Samples, sample) for sample in list_of_samples],
3  channel=channel,
4  category="catZttPol13TeV_"+category,
5  weight=args.weight,
6  lumi = args.lumi * 1000,
7  higgs_masses=higgs_masses,
8  estimationMethod="new",
9  polarisation_bias_correction=True,
10  cut_type="baseline_low_mvis",
11  no_ewk_samples = args.no_ewk_samples,
12  no_ewkz_as_dy = True,
13  asimov_nicks = asimov_nicks
14  )
list makePlots_datacardsZttPolarisation.datacard_filename_templates = []
tuple makePlots_datacardsZttPolarisation.datacards = zttpolarisationdatacards.ZttPolarisationDatacards()
dictionary makePlots_datacardsZttPolarisation.datacards_cbs = {}
tuple makePlots_datacardsZttPolarisation.datacards_per_channel_category = zttpolarisationdatacards.ZttPolarisationDatacards(cb=datacards.cb.cp().channel([channel]).bin([category]))
tuple makePlots_datacardsZttPolarisation.datacards_postfit_shapes
Initial value:
1 = datacards.postfit_shapes_fromworkspace(
2  datacards_cbs,
3  datacards_workspaces,
4  False,
5  args.n_processes,
6  "--sampling" + (" --print" if args.n_processes <= 1 else ""),
7  #fit_type_list=["fit_mdf"],
8  #fit_result="multidimfit.root"
9  )
tuple makePlots_datacardsZttPolarisation.datacards_workspaces
Initial value:
1 = datacards.text2workspace(
2  datacards_cbs,
3  args.n_processes,
4  "-P {MODEL} {MODEL_PARAMETERS}".format(
5  MODEL="CombineHarvester.ZTTPOL2016.taupolarisationmodels:ztt_pol",
6  MODEL_PARAMETERS=""
7  )
8  )
list makePlots_datacardsZttPolarisation.debug_plot_configs = []
string makePlots_datacardsZttPolarisation.default = ["mt", "et", "tt", "em"]
makePlots_datacardsZttPolarisation.DST = output_file,
list makePlots_datacardsZttPolarisation.hadd_commands = []
string makePlots_datacardsZttPolarisation.help = "Input directory."
list makePlots_datacardsZttPolarisation.higgs_masses = [mass for mass in datacards_per_channel_category.cb.mass_set() if mass != "*"]
makePlots_datacardsZttPolarisation.histogram_name_template = bkg_histogram_name_templateifnominalelsebkg_syst_histogram_name_template
string makePlots_datacardsZttPolarisation.input_root_filename_template = "input/${ANALYSIS}_${CHANNEL}_${BIN}_${ERA}.root"
dictionary makePlots_datacardsZttPolarisation.inv_annotation_replacements = {value : key for key, value in annotation_replacements.iteritems() if (type(key) != int) or (key < 1000)}
list makePlots_datacardsZttPolarisation.list_of_samples = [datacards.configs.process2sample(process) for process in list_of_samples]
tuple makePlots_datacardsZttPolarisation.log = logging.getLogger(__name__)
list makePlots_datacardsZttPolarisation.merged_output_files = []
makePlots_datacardsZttPolarisation.n_processes = args.n_processes,
tuple makePlots_datacardsZttPolarisation.nominal = (shape_systematic == "nominal")
tuple makePlots_datacardsZttPolarisation.output_dir = os.path.join(tmp_output_dir, "" if asimov_polarisation is None else ("pol{:04}".format(int(asimov_polarisation*1000))))
tuple makePlots_datacardsZttPolarisation.output_file
Initial value:
1 = os.path.join(args.output_dir, input_root_filename_template.replace("$", "").format(
2  ANALYSIS="ztt",
3  CHANNEL=channel,
4  BIN=category,
5  ERA="13TeV"
6  ))
tuple makePlots_datacardsZttPolarisation.output_files = []
string makePlots_datacardsZttPolarisation.output_root_filename_template = "datacards/common/${ANALYSIS}.input_${ERA}.root"
tuple makePlots_datacardsZttPolarisation.parser
Initial value:
1 = argparse.ArgumentParser(description="Create ROOT inputs and datacards for ZTT polarisation analysis.",
2  parents=[logger.loggingParser])
list makePlots_datacardsZttPolarisation.plot_configs = []
dictionary makePlots_datacardsZttPolarisation.plotting_args = {"ratio" : args.ratio, "args" : args.args, "lumi" : args.lumi, "x_expressions" : "tauPolarisationDiscriminatorSvfit", "era" : "2015", "www" : www}
dictionary makePlots_datacardsZttPolarisation.polarisation_values_tree_files = {}
tuple makePlots_datacardsZttPolarisation.PROCESS = datacards.configs.sample2process(sample.replace("asimov", "data"))
tuple makePlots_datacardsZttPolarisation.processes = datacards.cb.cp()
makePlots_datacardsZttPolarisation.s_fit_only = True,
tuple makePlots_datacardsZttPolarisation.sample_settings = samples.Samples()
string makePlots_datacardsZttPolarisation.samples = "\", \""
string makePlots_datacardsZttPolarisation.sig_histogram_name_template = "${BIN}/${PROCESS}"
string makePlots_datacardsZttPolarisation.sig_syst_histogram_name_template = "${BIN}/${PROCESS}_${SYSTEMATIC}"
makePlots_datacardsZttPolarisation.signal_stacked_on_bkg = True
makePlots_datacardsZttPolarisation.split_stat_syst_uncs = False
string makePlots_datacardsZttPolarisation.SRC = " "
makePlots_datacardsZttPolarisation.systematic = "nominal"
makePlots_datacardsZttPolarisation.SYSTEMATIC = systematic
tuple makePlots_datacardsZttPolarisation.systematics_factory = systematics.SystematicsFactory()
tuple makePlots_datacardsZttPolarisation.systematics_settings = systematics_factory.get(shape_systematic)
string makePlots_datacardsZttPolarisation.tmp_input_root_filename_template = "input/${ANALYSIS}_${CHANNEL}_${BIN}_${SYSTEMATIC}_${ERA}.root"
tuple makePlots_datacardsZttPolarisation.tmp_output_dir = os.path.join(args.output_dir, "" if scaled_lumi is None else ("lumi{:07}pb".format(int(scale_lumi*1000))))
tuple makePlots_datacardsZttPolarisation.tmp_output_file
Initial value:
1 = os.path.join(args.output_dir, tmp_input_root_filename_template.replace("$", "").format(
2  ANALYSIS="ztt",
3  CHANNEL=channel,
4  BIN=category,
5  SYSTEMATIC=systematic,
6  ERA="13TeV"
7  ))
tuple makePlots_datacardsZttPolarisation.tmp_output_files = []
tuple makePlots_datacardsZttPolarisation.tmp_www = None
makePlots_datacardsZttPolarisation.update_systematics = True
dictionary makePlots_datacardsZttPolarisation.values_tree_files = {}
tuple makePlots_datacardsZttPolarisation.www = None
list makePlots_datacardsZttPolarisation.x_values = sorted([values[0] for values in values_tree_files.keys() if values[0] > -990.0])
tuple makePlots_datacardsZttPolarisation.x_values_raw = sorted([values[1] for values in values_tree_files.keys() if values[1] > -990.0])