Functions | |
def | matching_process |
def | remove_procs_and_systs_with_zero_yield |
Variables | |
tuple | log = logging.getLogger(__name__) |
dictionary | models |
tuple | parser |
string | help = "Input directory." |
tuple | choices = models.keys() |
list | default = ["all"] |
tuple | args = parser.parse_args() |
string | weight_string = "(fabs(eta_2) < 1.460)" |
tuple | sample_settings = samples.Samples() |
tuple | systematics_factory = systematics.SystematicsFactory() |
list | plot_configs = [] |
list | hadd_commands = [] |
tuple | datacards = zttxsecdatacards.ZttLepTauFakeRateDatacards() |
tuple | model_settings = models.get(args.model, {}) |
tuple | fit_settings = model_settings.get("fit", {"" : {}}) |
list | excludecut_settings = model_settings['exclude_cuts'] |
string | tmp_input_root_filename_template = "input/${ANALYSIS}_${CHANNEL}_${BIN}_${SYSTEMATIC}_${ERA}.root" |
string | input_root_filename_template = "input/${ANALYSIS}_${CHANNEL}_${BIN}_${ERA}.root" |
string | bkg_histogram_name_template = "${BIN}/${PROCESS}" |
string | sig_histogram_name_template = "${BIN}/${PROCESS}" |
string | bkg_syst_histogram_name_template = "${BIN}/${PROCESS}_${SYSTEMATIC}" |
string | sig_syst_histogram_name_template = "${BIN}/${PROCESS}_${SYSTEMATIC}" |
list | datacard_filename_templates |
string | output_root_filename_template = "datacards/common/${ANALYSIS}.input_${ERA}.root" |
tuple | categories = datacards.cb.cp() |
tuple | datacards_per_channel_category = zttxsecdatacards.ZttLepTauFakeRateDatacards(cb=datacards.cb.cp().channel([channel]).bin([category])) |
tuple | output_file |
list | tmp_output_files = [] |
tuple | nominal = (shape_systematic == "nominal") |
list | list_of_samples = [datacards.configs.process2sample(process) for process in list_of_samples] |
string | systematic = "nominal" |
string | samples = "\", \"" |
channel = channel, | |
category = category, | |
float | wj_sf_shift = 0.0 |
tuple | config |
int | sub_conf_index = 0 |
tuple | systematics_settings = systematics_factory.get(shape_systematic) |
histogram_name_template = bkg_histogram_name_templateifnominalelsebkg_syst_histogram_name_template | |
tuple | PROCESS = datacards.configs.sample2process(sample) |
BIN = category, | |
SYSTEMATIC = systematic | |
tuple | tmp_output_file |
DST = output_file, | |
string | SRC = " " |
tuple | output_files = list(set([os.path.join(config["output_dir"], config["filename"]+".root") for config in plot_configs[:args.n_plots[0]]])) |
update_systematics = False | |
tuple | processes = datacards.cb.cp() |
float | add_threshold = 0.1 |
dictionary | datacards_cbs = {} |
dictionary | datacards_workspaces = {} |
dictionary | efficiency = {} |
int | nPassPre = 0 |
int | nFailPre = 0 |
tuple | sig_process = cb.cp() |
list | command |
STABLE = datacards.stable_options | |
tuple | datacards_postfit_shapes = datacards.postfit_shapes_fromworkspace(datacards_cbs, datacards_workspaces, True, args.n_processes, "--sampling" + (" --print" if args.n_processes <= 1 else "")) |
dictionary | plotting_args = {"ratio" : args.ratio, "args" : args.args, "lumi" : args.lumi, "x_expressions" : "m_vis", "era" : "2016"} |
n_processes = args.n_processes, | |
signal_stacked_on_bkg = True | |
list | bkg_plotting_order = ["ZL", "ZTT", "ZJ", "TT", "VV", "QCD"] |
tuple | postfit_shapes = datacards_postfit_shapes.get("fit_s", {}) |
int | nPass = 0 |
int | nFail = 0 |
tuple | results_file = ROOT.TFile(os.path.join(os.path.dirname(datacard), "fitDiagnostics.root")) |
tuple | results_tree = results_file.Get("tree_fit_sb") |
bestfit = results_tree.r | |
list | bkg_process = datacards_cbs[datacard] |
signal_scale = bestfit | |
list | effnom = efficiency[category[:2]] |
tuple | processes_to_plot = list(processes) |
def makePlots_datacardsZttEfficiency.matching_process | ( | obj1, | |
obj2 | |||
) |
def makePlots_datacardsZttEfficiency.remove_procs_and_systs_with_zero_yield | ( | proc | ) |
float makePlots_datacardsZttEfficiency.add_threshold = 0.1 |
tuple makePlots_datacardsZttEfficiency.args = parser.parse_args() |
makePlots_datacardsZttEfficiency.bestfit = results_tree.r |
makePlots_datacardsZttEfficiency.BIN = category, |
string makePlots_datacardsZttEfficiency.bkg_histogram_name_template = "${BIN}/${PROCESS}" |
list makePlots_datacardsZttEfficiency.bkg_plotting_order = ["ZL", "ZTT", "ZJ", "TT", "VV", "QCD"] |
list makePlots_datacardsZttEfficiency.bkg_process = datacards_cbs[datacard] |
string makePlots_datacardsZttEfficiency.bkg_syst_histogram_name_template = "${BIN}/${PROCESS}_${SYSTEMATIC}" |
tuple makePlots_datacardsZttEfficiency.categories = datacards.cb.cp() |
makePlots_datacardsZttEfficiency.category = category, |
makePlots_datacardsZttEfficiency.channel = channel, |
tuple makePlots_datacardsZttEfficiency.choices = models.keys() |
list makePlots_datacardsZttEfficiency.command |
dictionary makePlots_datacardsZttEfficiency.config |
list makePlots_datacardsZttEfficiency.datacard_filename_templates |
tuple makePlots_datacardsZttEfficiency.datacards = zttxsecdatacards.ZttLepTauFakeRateDatacards() |
dictionary makePlots_datacardsZttEfficiency.datacards_cbs = {} |
tuple makePlots_datacardsZttEfficiency.datacards_per_channel_category = zttxsecdatacards.ZttLepTauFakeRateDatacards(cb=datacards.cb.cp().channel([channel]).bin([category])) |
tuple makePlots_datacardsZttEfficiency.datacards_postfit_shapes = datacards.postfit_shapes_fromworkspace(datacards_cbs, datacards_workspaces, True, args.n_processes, "--sampling" + (" --print" if args.n_processes <= 1 else "")) |
dictionary makePlots_datacardsZttEfficiency.datacards_workspaces = {} |
string makePlots_datacardsZttEfficiency.default = ["all"] |
makePlots_datacardsZttEfficiency.DST = output_file, |
dictionary makePlots_datacardsZttEfficiency.efficiency = {} |
list makePlots_datacardsZttEfficiency.effnom = efficiency[category[:2]] |
list makePlots_datacardsZttEfficiency.excludecut_settings = model_settings['exclude_cuts'] |
tuple makePlots_datacardsZttEfficiency.fit_settings = model_settings.get("fit", {"" : {}}) |
list makePlots_datacardsZttEfficiency.hadd_commands = [] |
string makePlots_datacardsZttEfficiency.help = "Input directory." |
makePlots_datacardsZttEfficiency.histogram_name_template = bkg_histogram_name_templateifnominalelsebkg_syst_histogram_name_template |
string makePlots_datacardsZttEfficiency.input_root_filename_template = "input/${ANALYSIS}_${CHANNEL}_${BIN}_${ERA}.root" |
list makePlots_datacardsZttEfficiency.list_of_samples = [datacards.configs.process2sample(process) for process in list_of_samples] |
tuple makePlots_datacardsZttEfficiency.log = logging.getLogger(__name__) |
tuple makePlots_datacardsZttEfficiency.model_settings = models.get(args.model, {}) |
dictionary makePlots_datacardsZttEfficiency.models |
makePlots_datacardsZttEfficiency.n_processes = args.n_processes, |
tuple makePlots_datacardsZttEfficiency.nFail = 0 |
tuple makePlots_datacardsZttEfficiency.nFailPre = 0 |
tuple makePlots_datacardsZttEfficiency.nominal = (shape_systematic == "nominal") |
tuple makePlots_datacardsZttEfficiency.nPass = 0 |
tuple makePlots_datacardsZttEfficiency.nPassPre = 0 |
tuple makePlots_datacardsZttEfficiency.output_file |
tuple makePlots_datacardsZttEfficiency.output_files = list(set([os.path.join(config["output_dir"], config["filename"]+".root") for config in plot_configs[:args.n_plots[0]]])) |
string makePlots_datacardsZttEfficiency.output_root_filename_template = "datacards/common/${ANALYSIS}.input_${ERA}.root" |
tuple makePlots_datacardsZttEfficiency.parser |
list makePlots_datacardsZttEfficiency.plot_configs = [] |
dictionary makePlots_datacardsZttEfficiency.plotting_args = {"ratio" : args.ratio, "args" : args.args, "lumi" : args.lumi, "x_expressions" : "m_vis", "era" : "2016"} |
tuple makePlots_datacardsZttEfficiency.postfit_shapes = datacards_postfit_shapes.get("fit_s", {}) |
tuple makePlots_datacardsZttEfficiency.PROCESS = datacards.configs.sample2process(sample) |
list makePlots_datacardsZttEfficiency.processes = datacards.cb.cp() |
list makePlots_datacardsZttEfficiency.processes_to_plot = list(processes) |
tuple makePlots_datacardsZttEfficiency.results_file = ROOT.TFile(os.path.join(os.path.dirname(datacard), "fitDiagnostics.root")) |
tuple makePlots_datacardsZttEfficiency.results_tree = results_file.Get("tree_fit_sb") |
tuple makePlots_datacardsZttEfficiency.sample_settings = samples.Samples() |
string makePlots_datacardsZttEfficiency.samples = "\", \"" |
string makePlots_datacardsZttEfficiency.sig_histogram_name_template = "${BIN}/${PROCESS}" |
list makePlots_datacardsZttEfficiency.sig_process = cb.cp() |
string makePlots_datacardsZttEfficiency.sig_syst_histogram_name_template = "${BIN}/${PROCESS}_${SYSTEMATIC}" |
tuple makePlots_datacardsZttEfficiency.signal_scale = bestfit |
makePlots_datacardsZttEfficiency.signal_stacked_on_bkg = True |
string makePlots_datacardsZttEfficiency.SRC = " " |
makePlots_datacardsZttEfficiency.STABLE = datacards.stable_options |
int makePlots_datacardsZttEfficiency.sub_conf_index = 0 |
makePlots_datacardsZttEfficiency.systematic = "nominal" |
makePlots_datacardsZttEfficiency.SYSTEMATIC = systematic |
tuple makePlots_datacardsZttEfficiency.systematics_factory = systematics.SystematicsFactory() |
tuple makePlots_datacardsZttEfficiency.systematics_settings = systematics_factory.get(shape_systematic) |
string makePlots_datacardsZttEfficiency.tmp_input_root_filename_template = "input/${ANALYSIS}_${CHANNEL}_${BIN}_${SYSTEMATIC}_${ERA}.root" |
tuple makePlots_datacardsZttEfficiency.tmp_output_file |
list makePlots_datacardsZttEfficiency.tmp_output_files = [] |
makePlots_datacardsZttEfficiency.update_systematics = False |
string makePlots_datacardsZttEfficiency.weight_string = "(fabs(eta_2) < 1.460)" |
float makePlots_datacardsZttEfficiency.wj_sf_shift = 0.0 |