Classes | |
class | CutOptimizer |
Functions | |
def | make_Histogram |
def | optimize |
def | test_function |
Variables | |
tuple | log = logging.getLogger(__name__) |
tuple | parser |
string | help = "Input directory." |
list | default = ["ztt", "zll", "zl", "zj", "ttj", "vv", "wj", "qcd", "data"] |
list | choices = ["ztt", "zll", "zl", "zj", "ttj", "vv", "wj", "qcd", "ff", "ggh", "qqh", "bbh", "vh", "htt", "data"] |
tuple | args = parser.parse_args() |
list | list_of_samples = [getattr(samples.Samples, sample) for sample in args.samples] |
tuple | sample_settings = samples.Samples() |
list | bkg_samples = [sample for sample in args.samples if sample not in ["data", "htt", "bbh"]] |
list | sig_samples_raw = [sample for sample in args.samples if sample in ["htt", "bbh"]] |
list | sig_samples = [] |
string | scale_str = "_%i" |
tuple | binnings_settings = binnings.BinningsDict() |
category_string = None | |
tuple | config |
list | x_bins = [x for x in range(int(float(args.x_range[0])*100),int(float(args.x_range[1])*100)+1, int((float(args.x_range[1])-float(args.x_range[0]))*4))] |
list | y_bins = [] |
list | z_bins = [] |
list | variables = [args.x_quantity] |
list | current_cuts = [] |
int | current_max = 0 |
list | real_values = [] |
list | b_max_index = current_cuts[0] |
list | b_min = x_bins[b_max_index-3] |
list | b_max = x_bins[b_max_index+3] |
tuple | step = (b_max-b_min) |
tuple | tfile = ROOT.TFile(os.path.expandvars(os.path.join(args.output_dir, "CutOptimizerStorage.root")), "READ") |
list | hist_list = [tfile.Get(name) for name in bkg_samples] |
tuple | htt = tfile.Get(sig_samples[0]) |
tuple | bkg_hist = hist_list.pop(0) |
tuple | opt_test = CutOptimizer(variables, [htt,bkg_hist]) |
def cutOptimizer.make_Histogram | ( | ) |
def cutOptimizer.optimize | ( | root_histogram | ) |
def cutOptimizer.test_function | ( | kwargs | ) |
tuple cutOptimizer.args = parser.parse_args() |
tuple cutOptimizer.b_max = x_bins[b_max_index+3] |
list cutOptimizer.b_max_index = current_cuts[0] |
tuple cutOptimizer.b_min = x_bins[b_max_index-3] |
tuple cutOptimizer.binnings_settings = binnings.BinningsDict() |
tuple cutOptimizer.bkg_hist = hist_list.pop(0) |
list cutOptimizer.bkg_samples = [sample for sample in args.samples if sample not in ["data", "htt", "bbh"]] |
tuple cutOptimizer.category_string = None |
list cutOptimizer.choices = ["ztt", "zll", "zl", "zj", "ttj", "vv", "wj", "qcd", "ff", "ggh", "qqh", "bbh", "vh", "htt", "data"] |
tuple cutOptimizer.config |
list cutOptimizer.current_cuts = [] |
int cutOptimizer.current_max = 0 |
string cutOptimizer.default = ["ztt", "zll", "zl", "zj", "ttj", "vv", "wj", "qcd", "data"] |
string cutOptimizer.help = "Input directory." |
list cutOptimizer.hist_list = [tfile.Get(name) for name in bkg_samples] |
tuple cutOptimizer.htt = tfile.Get(sig_samples[0]) |
list cutOptimizer.list_of_samples = [getattr(samples.Samples, sample) for sample in args.samples] |
tuple cutOptimizer.log = logging.getLogger(__name__) |
tuple cutOptimizer.opt_test = CutOptimizer(variables, [htt,bkg_hist]) |
tuple cutOptimizer.parser |
list cutOptimizer.real_values = [] |
tuple cutOptimizer.sample_settings = samples.Samples() |
string cutOptimizer.scale_str = "_%i" |
list cutOptimizer.sig_samples = [] |
list cutOptimizer.sig_samples_raw = [sample for sample in args.samples if sample in ["htt", "bbh"]] |
tuple cutOptimizer.tfile = ROOT.TFile(os.path.expandvars(os.path.join(args.output_dir, "CutOptimizerStorage.root")), "READ") |
list cutOptimizer.variables = [args.x_quantity] |
list cutOptimizer.x_bins = [x for x in range(int(float(args.x_range[0])*100),int(float(args.x_range[1])*100)+1, int((float(args.x_range[1])-float(args.x_range[0]))*4))] |
list cutOptimizer.y_bins = [] |
list cutOptimizer.z_bins = [] |