Classes | |
| class | CutOptimizer |
Functions | |
| def | make_Histogram |
| def | optimize |
| def | test_function |
Variables | |
| tuple | log = logging.getLogger(__name__) |
| tuple | parser |
| string | help = "Input directory." |
| list | default = ["ztt", "zll", "zl", "zj", "ttj", "vv", "wj", "qcd", "data"] |
| list | choices = ["ztt", "zll", "zl", "zj", "ttj", "vv", "wj", "qcd", "ff", "ggh", "qqh", "bbh", "vh", "htt", "data"] |
| tuple | args = parser.parse_args() |
| list | list_of_samples = [getattr(samples.Samples, sample) for sample in args.samples] |
| tuple | sample_settings = samples.Samples() |
| list | bkg_samples = [sample for sample in args.samples if sample not in ["data", "htt", "bbh"]] |
| list | sig_samples_raw = [sample for sample in args.samples if sample in ["htt", "bbh"]] |
| list | sig_samples = [] |
| string | scale_str = "_%i" |
| tuple | binnings_settings = binnings.BinningsDict() |
| category_string = None | |
| tuple | config |
| list | x_bins = [x for x in range(int(float(args.x_range[0])*100),int(float(args.x_range[1])*100)+1, int((float(args.x_range[1])-float(args.x_range[0]))*4))] |
| list | y_bins = [] |
| list | z_bins = [] |
| list | variables = [args.x_quantity] |
| list | current_cuts = [] |
| int | current_max = 0 |
| list | real_values = [] |
| list | b_max_index = current_cuts[0] |
| list | b_min = x_bins[b_max_index-3] |
| list | b_max = x_bins[b_max_index+3] |
| tuple | step = (b_max-b_min) |
| tuple | tfile = ROOT.TFile(os.path.expandvars(os.path.join(args.output_dir, "CutOptimizerStorage.root")), "READ") |
| list | hist_list = [tfile.Get(name) for name in bkg_samples] |
| tuple | htt = tfile.Get(sig_samples[0]) |
| tuple | bkg_hist = hist_list.pop(0) |
| tuple | opt_test = CutOptimizer(variables, [htt,bkg_hist]) |
| def cutOptimizer.make_Histogram | ( | ) |
| def cutOptimizer.optimize | ( | root_histogram | ) |
| def cutOptimizer.test_function | ( | kwargs | ) |
| tuple cutOptimizer.args = parser.parse_args() |
| tuple cutOptimizer.b_max = x_bins[b_max_index+3] |
| list cutOptimizer.b_max_index = current_cuts[0] |
| tuple cutOptimizer.b_min = x_bins[b_max_index-3] |
| tuple cutOptimizer.binnings_settings = binnings.BinningsDict() |
| tuple cutOptimizer.bkg_hist = hist_list.pop(0) |
| list cutOptimizer.bkg_samples = [sample for sample in args.samples if sample not in ["data", "htt", "bbh"]] |
| tuple cutOptimizer.category_string = None |
| list cutOptimizer.choices = ["ztt", "zll", "zl", "zj", "ttj", "vv", "wj", "qcd", "ff", "ggh", "qqh", "bbh", "vh", "htt", "data"] |
| tuple cutOptimizer.config |
| list cutOptimizer.current_cuts = [] |
| int cutOptimizer.current_max = 0 |
| string cutOptimizer.default = ["ztt", "zll", "zl", "zj", "ttj", "vv", "wj", "qcd", "data"] |
| string cutOptimizer.help = "Input directory." |
| list cutOptimizer.hist_list = [tfile.Get(name) for name in bkg_samples] |
| tuple cutOptimizer.htt = tfile.Get(sig_samples[0]) |
| list cutOptimizer.list_of_samples = [getattr(samples.Samples, sample) for sample in args.samples] |
| tuple cutOptimizer.log = logging.getLogger(__name__) |
| tuple cutOptimizer.opt_test = CutOptimizer(variables, [htt,bkg_hist]) |
| tuple cutOptimizer.parser |
| list cutOptimizer.real_values = [] |
| tuple cutOptimizer.sample_settings = samples.Samples() |
| string cutOptimizer.scale_str = "_%i" |
| list cutOptimizer.sig_samples = [] |
| list cutOptimizer.sig_samples_raw = [sample for sample in args.samples if sample in ["htt", "bbh"]] |
| tuple cutOptimizer.tfile = ROOT.TFile(os.path.expandvars(os.path.join(args.output_dir, "CutOptimizerStorage.root")), "READ") |
| list cutOptimizer.variables = [args.x_quantity] |
| list cutOptimizer.x_bins = [x for x in range(int(float(args.x_range[0])*100),int(float(args.x_range[1])*100)+1, int((float(args.x_range[1])-float(args.x_range[0]))*4))] |
| list cutOptimizer.y_bins = [] |
| list cutOptimizer.z_bins = [] |